

DataFlex Security library v1.0.0
DATA ACCESS WORLDWIDE

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 2 of 24
z

Business Software for a Changing WorldTM

Copyrights © 1998-2018
Data Access Europe B.V.

All rights reserved

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 3 of 24
z

Business Software for a Changing WorldTM

Chapter 1 Introduction ... 5

Design goals ... 5

Before you begin ... 5

Chapter 2 Adding the library to your workspace .. 7

Chapter 3 First steps - generic hashes .. 8

Generic hashes .. 8

Design choice – static or dynamic objects? ... 8

Generating a file hash (static object approach) ... 8

Generating a file hash (dynamic object approach) .. 10

Chapter 4 Keyed hashes ... 11

Generating a keyed hash (static object approach) .. 11

Generating a keyed hash (dynamic object approach) ... 12

Chapter 5 Passcode storage methods .. 13

Basic password hash usage ... 14

WebApp integration .. 15

Chapter 6 One-Time Passwords ... 17

Usability considerations .. 17

Security considerations ... 17

WebApp integration .. 17

Chapter 7 Encryption .. 19

Terminology ... 19

Encrypting data using AES-CBC ... 19

Encrypting data using AES-GCM ... 21

Additional authenticated data (AAD) ... 22

Chapter 8 Supported algorithms .. 23

Generic hash algorithms ... 23

Keyed hash algorithms .. 23

Passcode storage method algorithms .. 23

Encryption algorithms ... 24

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 4 of 24
z

Business Software for a Changing WorldTM

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 5 of 24
z

Business Software for a Changing WorldTM

Chapter 1 Introduction

During the last few years numerous cyberattacks have made the headlines: ransomware, DDOS

attacks, and election manipulation is becoming more popular every day. The people at Data Access

saw this happening and took their time to create a library that has everything on board to improve

security of DataFlex applications drastically.

This manual is intended for DataFlex developers. Prior knowledge of security or encryption are useful,

but not necessary to implement better security. That said, we strongly encourage you to read more on

the subject. Good security is not only about techniques, but mostly about making the right decision for

each specific scenario. Even though this library can make your applications secure, it is the way you

apply the functionality that makes or breaks your security. Data Access can therefore not take any

responsibility for the implementation choices you make, nor for any bugs or security holes present in

the library.

Design goals
During the last few years Data Access has gained significant experience on security in software, which

has resulted in the release of the DataFlex Security library (DFSecurity). This library has a solid yet

flexible design based on a number of core values.

Simplicity
The library’s public interface was designed to be very easy to use. Data Access realized that many

software developers do not have intimate knowledge of security, nor should they not need to. The

library contains all the functionality you need, and this manual will guide you to the right class to use

for your use case.

Flexibility
The world of cyber-security continually evolves at an astonishing rate. The encryption algorithms of

today may no longer be sufficiently secure tomorrow. Computers become faster, bugs are discovered

in software libraries, and weaknesses are found in algorithms. The security library was designed to be

flexible and enable you to upgrade your software to stronger parameters, better algorithms, or even

different security engines without any significant changes to your code.

Stability
A large number of automated unit tests assure every function the library exposes is tested before

release. This ensures correct implementation of each hashing or encryption algorithm, and prevents

code from breaking after an update.

Before you begin
It is useful to know a few concepts on security – this will help you understand the design choices

made.

Cryptographic algorithms act on raw binary data. In DataFlex this is best represented by the UChar

array data type and the DFSecurity library uses this data type a lot. If you need to store such binary

data somewhere, you may want to convert it to a string value using base64 or base32 encoding. The

security library’s global object ghoSecurity provides methods for this.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 6 of 24
z

Business Software for a Changing WorldTM

The code samples in this document have been simplified for clarity. Error handling is kept to a

minimum, unless it is needed to illustrate the current topic.

Make sure you have the latest DataFlex Studio installed on your system, and that you can run the

Order Entry example application without any issues. Web Application samples additionally require IIS

to be installed, and the WebOrderMobile example workspace is a good one to test all technical

requirements.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 7 of 24
z

Business Software for a Changing WorldTM

Chapter 2 Adding the library to your workspace

As mentioned before, the DataFlex Security library has been designed to be both easy to use and

flexible. These principles are already apparent when you add it to your workspace. The DFSecurity

Core library should be added to your workspace using the Maintain Libraries… option in the Tools

menu of the DataFlex Studio.

Once the library is added to the workspace you can use the DFSecurity base classes, but there is no

real functionality yet. The library does not include any direct support for any security engine – you

need to add one or more additional libraries. The reason for this choice is simple: flexibility.

Currently, two cryptography engines are available and supported:

 CNG – the Microsoft Cryptography API: Next Generation1 (CNG). This engine is the successor

to the original CryptAPI (wincrypt), and is also readily available in Windows, since Vista and

Server 2008. It contains a number of stronger algorithms, which usually makes it a better

choice than wincrypt.

 Libsodium – a cross-platform free and open-source library (DLL) supporting a number of highly

secure and modern algorithms. If you are free in choosing your algorithms, this engine is a

good choice.

It is advisable to use the best algorithm you can when implementing new functionality, but sometimes

software needs to communicate with other software and the required algorithms for that are not

available. Luckily DFSecurity supports the usage of multiple engines in parallel, so you can add support

for any algorithm needed by adding multiple libraries to your workspace.

1 Yes, that is its official name.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 8 of 24
z

Business Software for a Changing WorldTM

Chapter 3 First steps - generic hashes

We will gently introduce the various ideas and concepts of the library to you step by step. This chapter

fully discusses the simple generic hashes and how to use them.

Generic hashes
Generic hashes are fixed-length fingerprints for an arbitrary long message. A tiny change to the

message (even a single bit) will result in a massively different hash value. When using a good

algorithm, it is virtually impossible to change a message without changing the hash2.

Generic hashes are mainly used for file integrity checking, or creating unique identifiers to index data.

Security theory
Hashes are generated from a message. It is not possible to directly recover the message from a hash.

Unfortunately this is not entirely true for every application. Using generic hashes for storing passwords

for instance, is a very bad idea. Modern computers can calculate millions of hashes per second, so

rainbow tables3 or a dictionary attack will allow a hacker to find a lot of matches with little effort.

Design choice – static or dynamic objects?
Historically it is very common in DataFlex to use statically defined objects. This means an object is

defined in code with an Object command, and it can be referenced by its name. DataFlex also supports

dynamic objects, instantiated by the Create and CreateNamed methods. These return an object

handle that can be used to reference it, and the object must be destroyed manually as well (using the

destroy method). The Security library aims to supports both syntaxes for every public class, and the

generic hashes are a very good example illustrating the reasons behind that decision.

Generating a file hash (static object approach)
One common use case for a generic hash is a file hash. Minor changes to a file will result in a

completely different hash, so this hash can be used to check a file’s integrity. The code below is a

simple example of this.

The cSecureHash class exposes the generic hashing functionality. Generating a hash consists of three

phases:

1. Initialize the engine and set it up for the desired algorithm.

2. Feed raw data to the hash object. This can be done multiple times.

3. Finalize the hash and get the resulting value.

2 Some algorithms are vulnerable to length extension attacks though…
3 We cannot explain everything in this document. Search the internet for more information about a subject if
you are interested.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 9 of 24
z

Business Software for a Changing WorldTM

In this example the chosen hash algorithm is SHA256 and the CNG engine is used. This is clearly

defined by the piHashImplementation property which is set to a C_SEC_HASH_* constant. These

constants are provided by the various engine libraries, so depending on which engine libraries you use

additional constants may be available. The object is initialized at object creation, which means that

you cannot change the piHashImplementation or other properties later on.

Once the hash object is initialized, the Update method adds data to the current hash calculation. This

means that a single hash object can generate a single hash at any time, until it is finalized. You can call

Update once or multiple times, depending on your needs. This can save some memory, or you can

provide a “Cancel” option somehow.

When all the data has been fed to the hash object, Finalize will return the resulting hash value. The

size of this hash value is dependent on the algorithm used: SHA256 will return 256 bits (32 bytes), but

for example MD5 will return only 16 bytes. Libsodium supports the blake2b algorithm, which can be

configured to return at least 16 and at most 64 bytes. The cSecureHash class has a piOutputBytes

property that can be used to configure this.

Hash object reuse
When you have finalized the hash, the object is immediately available for reuse. The next call to

Update will start a new hash. Some engines do not natively support this, but the DFSecurity engine

wrappers work around such limitations.

Reuse is only supported with the same settings, such as the engine and algorithm. It is bad practice to

use a single hash object for different types because it can easily lead to confusion. If you need to be

flexible it is better to create and destroy objects dynamically.

Use DFSecurity_CNG.pkg

Object oFileHash is a cSecureHash

 Set piHashImplementation to C_SEC_HASH_CNG_SHA256

 Send Initialize

 Function HashForFile String sPathAndFileName Returns UChar[]

 UChar[] ucaData

 UChar[] ucaHash

 Direct_Input sPathAndFileName

 While (not(SeqEOF))

 Read_Block ucaData 4096

 Send Update ucaData

 Loop

 Close_Input

 Get Finalize to ucaHash

 Function_Return ucaHash

 End_Function

End_Object

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 10 of 24
z

Business Software for a Changing WorldTM

Generating a file hash (dynamic object approach)
The same file hashing as before can be implemented using dynamic object creation. This is mostly

useful when the engine and/or algorithm must be flexible during program execution.

It is very important not to forget to destroy the object when you’re done. If you don’t, you will

eventually run out of handles or memory.

Use DFSecurity_CNG.pkg

Function HashForFile String sPathAndFileName Integer iHashImpl Returns UChar[]

 Handle hoHash

 UChar[] ucaData

 UChar[] ucaHash

 Get Create (RefClass(cSecureHash)) to hoHash

 Set piHashImplementation of hoHash to iHashImpl

 Send Initialize of hoHash

 Direct_Input sPathAndFileName

 While (not(SeqEOF))

 Read_Block ucaData 4096

 Send Update of hoHash ucaData

 Loop

 Close_Input

 Get Finalize of hoHash to ucaHash

 Send Destroy of hoHash

 Function_Return ucaHash

End_Function

...

Get HashForFile sFile C_SEC_HASH_CNG_SHA256 to ucaFileHash

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 11 of 24
z

Business Software for a Changing WorldTM

Chapter 4 Keyed hashes

In some situations a hash value is desired, but it should be hard for anyone to generate unless it is a

trusted party. For instance, when sending a file across the network a hacker may insert ransomware

into it and generate a new hash value. If generic hashes are used you will not be able to detect the

tampering. That is where keyed hashes such as Hash-based Message Authentication Codes (HMAC)

are useful.

A keyed hash can be generated very fast, but also includes a secret key in the process. It is not possible

for a hacker to change the message as well as the HMAC within reasonable time, unless he has the

key.

Generating a keyed hash (static object approach)
DFSecurity uses the same cSecureHash class for keyed hashes, but requires the piHashAlgorithm to be

a keyed algorithm.

In this example the chosen hash algorithm is blake2b and the libsodium engine is used. To illustrate

how to change a hash length, the default hash length is reduced from the default 32 to 16. Each

engine can provide several keyed hash algorithms – CNG for instance provides the well-known HMAC-

SHA1.

The most important part is to add an UChar array parameter containing the secret key to Initialize.

This secret key must be kept secret at all times, and it should be possible to change this key without

recompiling the application. In this example, a fictional method ReadTheKeyFromASecureLocation

retrieves the key and returns it.

Use DFSecurity_Libsodium.pkg

Object oKeyedDataHash is a cSecureHash

 Set piHashImplementation to C_SEC_HASH_LIBSODIUM_BLAKE2b

 Set piOutputBytes to 16 // default is 32

 Procedure Initialize

 UChar[] ucaKey

 Send ReadTheKeyFromASecureLocation (&ucaKey)

 Forward Send Initialize (&ucaKey)

 End_Procedure

 Function HashForData UChar[] ucaData Returns UChar[]

 UChar[] ucaHash

 Send Update ucaData

 Get Finalize to ucaHash

 Function_Return ucaHash

 End_Function

End_Object

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 12 of 24
z

Business Software for a Changing WorldTM

Once the hash object is initialized, everything is the same as for a normal keyless hash. The engine

wrappers make sure you never need to provide the key again while the object lives.

Security theory
Note that the key variable is passed by reference. This ensures that we do not have multiple copies of

the key in memory. The library will overwrite it with zeroes before returning from Initialize, so it will

only be in memory for a very short period of time.

Generating a keyed hash (dynamic object approach)
Similar to the generic hash, a keyed hash can be created using the dynamic approach. This can be

most useful when many different keys (e.g. user specific) are in use, or when the key is generated

from some form of key agreement.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 13 of 24
z

Business Software for a Changing WorldTM

Chapter 5 Passcode storage methods

Even though everyone still uses the term password, we believe passcode is more correct. A single

word is not good enough anymore. Users should use a long random code or a passphrase.

Passcode storage methods are only useful for user authentication – not for storing a password your

system needs, e.g. for sending e-mails. You can store and verify a passcode, but you cannot retrieve

the original passcode from the stored value.

Proper passcode storage methods are very different from generic or keyed hashes. Over the past few

years we learned that many users choose passwords that are very easily guessed4. Dictionary attacks

have become very effective due to the speed of hash calculations.

Passcode hashing functions derive a secret key of any size from a passcode and a salt, and have a

number of characteristics:

 The generated key has the size defined by the application, no matter what the password

length is.

 The same password hashed with the same parameters will always produce the same output.

 The same password hashed with different salts will produce different outputs.

 The function deriving a key from a password and a salt is CPU intensive and intentionally

requires a fair amount of memory. Therefore, it mitigates brute-force attacks by requiring a

significant effort (and cost) to verify each password.

In practice many inexperienced software developers make mistakes when implementing password

hashing, either because they reuse salts, don’t use a cryptographically secure random number

generator for the salts, or choose a generic hash algorithm instead of a specialized password hashing

algorithm. The Security library therefore hides most technical aspects from the developers, because

the only two things you should care about are:

 Turn the plaintext password into some secure data to store.

 Verify a plaintext password against that stored data.

Those two steps are implemented by the StorageString and Verify methods of the

cSecurePasscodeStorageMethod class.

4 We strongly advise checking new passcodes against a list of known bad passcodes, such as the
HaveIBeenPwned database, and rejected them if they are in there.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 14 of 24
z

Business Software for a Changing WorldTM

Basic password hash usage

Creating a cSecurePasscodeStorageMethod object is quite similar to a generic hash. Note that the

hash implementation must be a C_SEC_PWHASH_* constant, which is a different set than the

supported generic hashes.

Password hashing algorithms can be tweaked to take a certain amount of time to calculate on specific

hardware. It is advised for user logins to aim for about a second – this is hardly noticeable for the user

logging in, while it is a real pain for brute force attackers. The library comes with a separate project

template that you can use to find an estimate of optimal parameters, which is discussed in the next

subsection.

One thing that may seem counterintuitive is that the StorageString and Verify methods assume the

password to be provided as a binary data type – not a string. The reason for this is that the hashing

algorithm actually does not care, and strings have the nasty habit of being encoded in OEM, or ANSI,

or UTF-8, and so on. The Security library does the safest thing: make no assumptions. It is your

responsibility to provide consistent data.

The storage string however is a string. This is not a problem, because every engine wrapper must

make sure the characters are plain 7-bit ASCII, meaning it is the same for OEM, ANSI, or UTF-8.

Passcode storage parameter estimation tool
File -> New -> Project… -> “Passcode Storage Parameter Estimation Project”

Build & Run.

Use DFSecurity_Libsodium.pkg

Object oPasscodeStore is a cSecurePasscodeStorageMethod

 Set piPasscodeHashImplementation to C_SEC_PWHASH_LIBSODIUM_ARGON2I

 Set piMemLimit to crypto_pwhash_argon2i_MEMLIMIT_INTERACTIVE // default

 Set piOpsLimit to crypto_pwhash_argon2i_OPSLIMIT_INTERACTIVE // default

 Send Initialize

End_Object

Procedure Main

 Boolean bOk

 String sPasswordStorageString

 UChar[] ucaPassword

 Move (StringToUCharArray(“Password”)) to ucaPassword // the worst password...

 Get StorageString of oPasscodeStore (&ucaPassword) to sPasswordStorageString

 // ucaPassword is emptied automatically for security reasons

 Move (StringToUCharArray(“Password”)) to ucaPassword

 Get Verify of oPasswordHash (&ucaPassword) sPasswordStorageString to bOk

 If bOk Send Info_Box “The password is correct.”

 Else Send Stop_Box “Wait, what...!? Impossible!”

End_Procedure

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 15 of 24
z

Business Software for a Changing WorldTM

WebApp integration
In order to use this improved passcode storage scheme in a standard WebApp there are several other

things that need to be done:

 Add functionality to the cWebAppUserDataDictionary class so that Set Field_Changed_Value

of a password field includes the proper storage conversion.

 Expand the WebAppUser.Password field length (200 or more to be future-safe).

 A change to the SessionManager method ComparePasswords.

 Several views to properly handle the flow for a password reset.

With this setup it is very straightforward to upgrade the storage method so that new and changed

password are stored using an improved algorithm or higher complexity. If desired the storage method

properties can be made configurable via the front-end so that recompilation is not even needed. Such

an exercise is beyond the scope of this document.

cWebAppUserDataDictionary example
Object oMyMethod is a cSecurePasscodeStorageMethod

 Set piPasscodeHashImplementation to C_SEC_PWHASH_LIBSODIUM_ARGON2I

 Set piMemLimit to (256*1024*1024)

 Set piOpsLimit to 3

 Send Initialize

End_Object

Class cWebAppUserDataDictionary is a DataDictionary

 Import_Class_Protocol cSecurePasscodeStorageMethod_DD_Mixin

 Procedure Construct_Object

 Forward Send Construct_Object

 Send Define_cSecurePasscodeStorageMethod_DD_Mixin

 ...

 Set Field_PasscodeStorageObject Field WebAppUser.Password to oMyMethod

 End_Procedure

 ...

End_Class

The cSecurePasscodeStorageMethod_DD_Mixin class adds the Field_PasscodeStorageObject field

property to a DD class. When this property is set for a field, every time the Field_Changed_Value or

Field_Current_Value of that field is set, this value is routed through the defined

cSecurePasscodeStorageMethod and the storage string is put into the value instead of the raw

plaintext value.

New users should not have an active password – not even a difficult one. As long as the field remains

empty it will not be verifiable. This means the user will have to perform a password reset in order to

activate his login.

SessionManager extension
Function ComparePasswords String sUserPass String sEnteredPass Returns Boolean

 Boolean bMatch

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 16 of 24
z

Business Software for a Changing WorldTM

 UChar[] ucaPasscode

 Move (StringToUCharArray(sEnteredPass)) to ucaPasscode

 Send SecureStringOverwrite of ghoSecurity (&sEnteredPass)

 Get VerifyPasscode of ghoSecurity (&ucaPasscode) sUserPass to bMatch

 Function_Return bMatch

End_Function

By default this example code will route the passcode verification to the correct engine for verification.

If you still have (some) plaintext passwords in your database you can set the pbFallbackToPlaintext

property of ghoSecurity to true. This is not meant for production systems, but may be useful during

development. You should upgrade existing plaintext passwords to a secure storage method as soon as

possible.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 17 of 24
z

Business Software for a Changing WorldTM

Chapter 6 One-Time Passwords

The security library has built-in support for both Time-Based (TOTP) and Hash-Based (HOTP) one-time

passwords, as defined in RFC’s 4226 and 6238. In addition, the newer FIDO U2F standard, which uses

hardware tokens, can be implemented as well for web applications.

OTPs can be used as a second factor for the authentication processes. TOTPs are becoming

mainstream and a multitude of smartphone apps support it. HOTPs are more often supported by

hardware, such as USB security keys or smartcards. FIDO U2F is a newer standard using USB or NFC

tokens that is more secure and easier to use than the other methods. Unfortunately browser support

may be problematic – especially on smartphones.

HOTPs can also be used as a second factor for machine users, such as a web service consumer. This

ensures that intercepted communication does not enable the attacker to make any successful queries.

Using HOTP is better than TOTP for this scenario, because it mitigates the risk of a replay attack.

Usability considerations
TOTPs use the current time as an input for the calculation. If the user’s TOTP calculator time

significantly deviates from the server’s time the tokens will be reported as invalid. The library provides

a configurable number of earlier and future tokens to be accepted as well. These default values seem

to work just fine when users use their smartphone and the server is kept on time using ntp (network

time protocol).

HOTPs are counter-based. Both the client and the server keep track of the counter’s value and

sometimes a mismatch occurs. The library accepts a configurable number of counter values to be

considered valid, and reports back the new counter value in the piCounter property. It is your

responsibility to store this counter value in the database, resynchronizing is with the client. HOTP

implementations must accept 2 or more OTP’s with consecutive counter values to mitigate brute force

attacks.

Using the default settings and above recommendations, issues will rarely occur.

Security considerations
Both the calculation of an OTP and its validation requires possession of the secret. OTPs are therefore

only useful when used between two separate entities, such as logging in onto a web application. It is

not suitable for use in local Windows applications, because the program needs access to the secret

and thus a hacker can obtain it.

WebApp integration
To simplify integration of one-time passwords into DataFlex web applications we included a custom

web control: c2FAWebGroup. This group does not contain any visible controls, so developers are free

to define those themselves.

First, the JavaScript files for using this control must be added to your index.html. You may also want to

include the necessary files for the cWebQrCode class, which allows users to scan the TOTP secret with

their smartphone.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 18 of 24
z

Business Software for a Changing WorldTM

<script src="Custom/u2f-api.js"></script>

<script src="Custom/2FAWebGroup.js"></script>

<script src="qrcode/qrcode.min.js"></script>

<script src="Custom/WebQrCode.js"></script>

Now you can add a c2FAWebGroup to your login view and the user profile view. We strongly

encourage you to create it from the Class Palette in the Studio. This uses our template which includes

a number of to-dos for proper usage.

Setting up TOTP or FIDO U2F is complicated and cannot easily be presented in this document. Please

refer to the online course about security in the DataFlex Learning Center for a complete set of videos

and a sample workspace5.

5 This is not yet available at the time of writing. Release has been planned for later in 2018.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 19 of 24
z

Business Software for a Changing WorldTM

Chapter 7 Encryption

Encryption is a powerful method for keeping data secret. The basics of encryption are relatively easy

to comprehend, but choosing the right parameters (algorithm, chaining method, key length, etc.) is a

lot trickier.

The security library supports several forms of encryption, which are both forms of symmetric key

algorithms. These algorithms use the same key for both encrypting and decrypting the data.

Terminology
In the example I chose to use the AES block algorithm. An encryption algorithm consists of the data

manipulations that are performed to turn readable data into something unrecognizable, and of course

the manipulations needed to turn it back into readable form. Block algorithms do not manipulate a bit

or byte at a time, but an entire block of data. For AES these blocks are 16 bytes (128 bits) in size.

If the length of the data to be encrypted does not equal a multitude of the block size, the last block

will need to be expanded. This is called padding. If the data length does equal a multitude of the block

size an entire padding block will be added for technical reasons. This means that the encrypted data is

always a bit larger than the plaintext data.

Each block algorithm describes how to encrypt and decrypt a block, but data very often is larger than a

single block. If the same block operation is performed for each consecutive block this may result in

recognizable patterns. There are some clear examples of this on the internet6. To increase

randomness a number of chaining methods have been defined. Most of these take the result of the

previous block as an additional input factor for the next. Electronic Codebook (ECB) is the method that

you should avoid at all times. CBC is quite good and the most commonly used method, which is why

we chose to make it available in the security library.

If multiple messages start with the same plaintext data, the encrypted data for each message will start

the same as well. This is undesirable7. To mitigate this problem the block should be initialized with

something random – an initialization vector (IV). This IV must be generated randomly for every piece

of data and does not have to stay secret – you need to store/distribute the IV with the encrypted data

and use it for decryption as well. The security library by default generates a new IV every time you

start encrypting, so you don’t have to worry about that.

Encrypting data using AES-CBC
The sample below generates a new random key to encrypt and decrypt an array of data using AES in

CBC chaining mode with a 256 bits key. Note that the block length will still be 128 bits – the key length

does not change that.

6 Wikipedia has more information: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
7 In very specific situations this behavior may be required, but it should be a conscious decision.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 20 of 24
z

Business Software for a Changing WorldTM

Object oMyEncryptionMethod is a cSecureSymmetricKeyEncryptionMethod

 // ToDo: Set the symmetric key encryption implementation.

 Set piEncryptImplementation to C_SEC_SYMENC_CNG_AES256_CBC

 Procedure Initialize

 Integer iKeyLen

 UChar[] ucaKey

 // generate a new key

 Get MinimumKeyLength of ghoSecurity (piEncryptImplementation(Self)) ;

 to iKeyLen

 Get RandomData of ghoSecurity iKeyLen to ucaKey

 Forward Send Initialize (&ucaKey)

 End_Procedure

 Send Initialize

End_Object

Procedure TestEncryptAndDecrypt UChar[] ucaData

 Handle hoDec

 Handle hoEnc

 UChar[] ucaCipher

 UChar[] ucaIV

 UChar[] ucaPlain

 // encrypt ucaData

 Get NewEncryptor of oMyEncryptionMethod to hoEnc

 Get pucaIV of hoEnc to ucaIV

 Get EncryptChunk of hoEnc ucaData to ucaCipher

 Send Destroy of hoEnc

 // decrypt ucaCipher

 Get NewDecryptor of oMyEncryptionMethod ucaIV to hoDec

 Get DecryptChunk of hoDec ucaCipher to ucaPlain

 Send Destroy of hoDec

 // compare results

 If (IsSameArray(ucaPlain, ucaData)) Begin

 Send Info_Box "Encryption and decryption were successful."

 End

 Else Begin

 Send Info_Box "Something went terribly wrong here..."

 End

End_Procedure

Each encryption method object consists of an encryption implementation (algorithm, chaining mode,

key size) and a key. This key only needs to be loaded once and the library will keep it as safe as

possible.

Encryption is performed using an Encrypter object. This object generates a new random IV upon

creation. One or more calls to EncryptChunk will turn plaintext data into encrypted ciphertext. Make

sure each chunk of data is a multiple of the block size, unless it is the last chunk.

Decryption is performed by a Decrypter object that requires the IV used at encryption time. The

DecryptChunk method follows the same rules as EncryptChunk.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 21 of 24
z

Business Software for a Changing WorldTM

Encrypting data using AES-GCM
Sometimes it is now enough to keep data secret. You may want to make sure it has not been damaged

in transit or tampered with. It is quite simple to use a generic or keyed hash algorithm for this, but it is

not so simple to prove whether the combination of encrypted data and the hash is safe from

manipulation.

Luckily for us, some brilliant people have come up with methods to do it right. AES-GCM is an example

of an Authenticated Encryption mode. When used correctly it will encrypt data and calculate a secure

authentication tag (a sort of hash) at the same time. While decrypting it uses that authentication tag

to verify that the message is complete and unchanged. It is safe to distribute the authentication tag

with your encrypted data.

GCM uses the IV a bit differently than CBC – it consists of a random part (usually called a nonce) and a

sequential counter. The nonce is usually 12 bytes, leaving 4 bytes for the counter. The advantage of

using AES-GCM is not only that it provides both encryption and a hash, but also that recent CPUs have

been optimized for handling it. AES-GCM with CPU hardware acceleration is blazing fast.

The sample below generates a new random key to encrypt and decrypt an array of data using AES in

GCM chaining mode with a 256 bits key. Note that the block length will still be 128 bits and the nonce

is 12 bytes.

Object oMyAuthEncMethod is a cSecureSymmetricKeyEncryptionMethod

 // ToDo: Set the authenticated encryption implementation.

 Set piEncryptImplementation to C_SEC_AUTHENC_CNG_AES256_GCM

 ...

End_Object

Procedure TestEncryptAndDecrypt UChar[] ucaData

 Boolean bIsAuthentic

 Handle hoDec

 Handle hoEnc

 UChar[] ucaAuthTag

 UChar[] ucaCipher

 UChar[] ucaNonce

 UChar[] ucaPlain

 // encrypt and hash ucaData

 Get NewEncryptor of oMyAuthEncMethod to hoEnc

 Get pucaNonce of hoEnc to ucaNonce

 Get EncryptLastChunk of hoEnc ucaData to ucaCipher

 Get AuthenticationTag of hoEnc to ucaAuthTag

 Send Destroy of hoEnc

 // decrypt and verify ucaCipher

 Get NewDecryptor of oMyAuthEncMethod ucaNonce ucaAuthTag to hoDec

 Get DecryptLastChunk of hoDec ucaCipher to ucaPlain

 Get IsAuthentic of hoDec to bIsAuthentic

 Send Destroy of hoDec

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 22 of 24
z

Business Software for a Changing WorldTM

 // compare results

 If not bIsAuthentic Send Info_Box "Something went terribly wrong here..."

 Else Send Info_Box "Encryption and decryption were successful."

End_Procedure

In the example for AES-CBC we compared the original data with the decrypted data to determine

whether it was correct. In real life this is not possible and you would have to trust that the decrypted

output is correct. With AES-GCM the authentication tag helps you to make sure the message can be

trusted.

Additional authenticated data (AAD)
Sometimes it is useful or required to verify the authenticity of some unencrypted data in addition to

the encrypted data. This may for example include some unencrypted message headers needed for

routing the encrypted message over a network. If the authenticity of these headers is important they

may be supplied to the encryption method as additional authenticated data (AAD). This data is

included in the authentication tag calculation, but not in the encrypted data.

The example below is a minor variation of the previous one, with the additional of some AAD. The

changes have been highlighted.

...

Procedure TestEncryptAndDecrypt UChar[] ucaData

 Boolean bIsAuthentic

 Handle hoDec

 Handle hoEnc

 UChar[] ucaAAD

 UChar[] ucaAuthTag

 UChar[] ucaCipher

 UChar[] ucaNonce

 UChar[] ucaPlain

 Move (StringToUCharArray("From Me, To You")) to ucaAAD

 // encrypt and hash ucaData

 Get NewEncryptor of oMyAuthEncMethod to hoEnc

 Set pucaAAD of hoEnc to ucaAAD

 Get pucaNonce of hoEnc to ucaNonce

 Get EncryptLastChunk of hoEnc ucaData to ucaCipher

 Get AuthenticationTag of hoEnc to ucaAuthTag

 Send Destroy of hoEnc

 // decrypt and verify ucaCipher

 Get NewDecryptor of oMyAuthEncMethod ucaNonce ucaAuthTag ucaAAD to hoDec

 Get DecryptLastChunk of hoDec ucaCipher to ucaPlain

 Get IsAuthentic of hoDec to bIsAuthentic

 Send Destroy of hoDec

 ...

End_Procedure

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 23 of 24
z

Business Software for a Changing WorldTM

Chapter 8 Supported algorithms

When advice below mentions “Do not use” this means it should not be used for any new software.

These algorithms can of course be used for backwards compatibility or communication with external

software. Also when you do not wish to include libsodium, you may want to choose unadvised

algorithms in CNG – at your own risk of course.

Generic hash algorithms
Algorithm Hash length

(bytes)
CNG libsodium Advice/notes

MD2 16 X Do not use.

MD4 16 X Do not use.

MD5 16 X Do not use.

SHA1 20 X Do not use.

SHA256 32 X X

SHA384 48 X Provides some protection against
length extension attacks.

SHA512 64 X X

blake2b 16-64 (32) X Use if possible. Very strong, very fast,
and safe against hash length extension
attacks.

Keyed hash algorithms
Key lengths are arbitrary, but usually should match the algorithm’s block length. If the key is larger

than a single block length, usually a generic hash of the key is used.

Algorithm Hash length
(bytes)

CNG libsodium Advice/notes

HMAC-MD5 16 X

HMAC-SHA1 20 X

HMAC-SHA256 32 X X

HMAC-SHA384 48 X

HMAC-SHA512 64 X X

HMAC-SHA512256 32 X Truncated HMAC-SHA512.

blake2b 16-64 (32) X Use if possible. Very strong, very fast.

Passcode storage method algorithms
Algorithm CNG libsodium Advice/notes

PBKDF2(SHA1) X Ignores piMemLimit. Use an opslimit > 100.000!

PBKDF2(SHA256) X Ignores piMemLimit. Use an opslimit > 100.000!

scrypt X

argon2i X

argon2id X Use if possible. Best resistance against numerous
forms of attacks.

+31 74 2555 609 info@dataaccess.eu www.dataaccess.euData Access Europe B.V. / Lansinkesweg 4 / 7553 AEHengelo, The Netherlands

Page 24 of 24
z

Business Software for a Changing WorldTM

Encryption algorithms
Algorithm CNG libsodium Advice/notes

AES-ECB-128 X Do not use.

AES-ECB-192 X Do not use.

AES-ECB-256 X Do not use.

AES-CBC-128 X

AES-CBC-192 X

AES-CBC-256 X

AES-GCM-128 X Authenticated Encryption (AE)

AES-GCM-192 X Authenticated Encryption (AE)

AES-GCM-256 X Authenticated Encryption (AE)

	DataFlex Security library v1.0.0
	Chapter 1 Introduction
	Design goals
	Simplicity
	Flexibility
	Stability

	Before you begin

	Chapter 2 Adding the library to your workspace
	Chapter 3 First steps - generic hashes
	Generic hashes
	Security theory

	Design choice – static or dynamic objects?
	Generating a file hash (static object approach)
	1.
	2.
	3.
	Hash object reuse

	Generating a file hash (dynamic object approach)

	Chapter 4 Keyed hashes
	Generating a keyed hash (static object approach)
	4.
	5.
	Security theory

	Generating a keyed hash (dynamic object approach)

	Chapter 5 Passcode storage methods
	Basic password hash usage
	Passcode storage parameter estimation tool

	WebApp integration
	cWebAppUserDataDictionary example
	SessionManager extension

	Chapter 6 One-Time Passwords
	Usability considerations
	Security considerations
	WebApp integration

	Chapter 7 Encryption
	Terminology
	Encrypting data using AES-CBC
	Encrypting data using AES-GCM
	Additional authenticated data (AAD)

	Chapter 8 Supported algorithms
	Generic hash algorithms
	Keyed hash algorithms
	Passcode storage method algorithms
	Encryption algorithms

